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The electronic band structure of ABC-stacked multilayer graphene is studied within an effective mass
approximation. The electron and hole bands touching at zero energy support chiral quasiparticles characterized
by Berry’s phase N� for N layers, generalizing the low-energy band structure of monolayer and bilayer
graphene. We investigate the trigonal-warping deformation of the energy bands and show that the Lifshitz
transition, in which the Fermi circle breaks up into separate parts at low energy, reflects Berry’s phase N�. It
is particularly prominent in trilayers, N=3, with the Fermi circle breaking into three parts at a relatively large
energy that is related to next-nearest-layer coupling. For N=3, we study the effects of electrostatic potentials
which vary in the stacking direction, and find that a perpendicular electric field, as well as opening an energy
gap, strongly enhances the trigonal-warping effect. In magnetic fields, the N=3 Lifshitz transition is manifested
as a coalescence of Landau levels into triply degenerate levels.
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I. INTRODUCTION

Soon after the fabrication of individual graphene flakes a
few years ago,1 it was realized that low-energy quasiparticles
in graphene are chiral, with a linear dispersion and degree of
chirality characterized by Berry’s phase � in monolayer
graphene2,3 and quadratic dispersion related to Berry’s phase
2� in bilayers.4,5 In addition to their degree of chirality, bi-
layers are distinguished from monolayers by the possibility
of using doping or external gates to induce interlayer asym-
metry that opens a tunable gap between the conduction and
valence bands,5–11 as observed in transport12,13 and spectro-
scopic measurements.14–19

Recently, there has been experimental interest in the trans-
port properties of trilayer graphene.20–22 It is expected that
two different types of stacking orders, ABA and ABC �illus-
trated in Fig. 1�, will be realized in nature and that electronic
properties will depend strongly on the stacking type. For
ABA-stacked trilayer graphene, the low-energy electronic
band structure consists of separate monolayerlike and bilay-
erlike bands6,7,10,23–27 that become hybridized in the presence
of interlayer asymmetry.7,26 By contrast, the low-energy
bands of ABC-stacked trilayers7,10,23,28 do not resemble those
of monolayers or bilayers, but appear to be a cubic generali-
zation of them. Thus, there is a cubic dispersion relation and
chirality related to Berry’s phase 3�,7,29,30 and, as in bilayers,
the application of interlayer asymmetry is predicted to open
an energy gap in the spectrum.7,10

In this paper, we show that the low-energy band structure
of ABC-stacked multilayer graphene is not just a straightfor-
ward generalization of that of monolayers and bilayers. We
focus on a particular aspect of the band structure, trigonal
warping, which plays a crucial role in the low-energy band
structure. Trigonal warping is a deformation of the Fermi
circle around a degeneracy point,31 at each of two inequiva-
lent corners of the hexagonal Brillouin zone that are known
as K points32 �Fig. 1�b��. In bilayer graphene, trigonal warp-
ing is enhanced by the interlayer coupling and leads to a
Lifshitz transition33 when the Fermi line about each K point

is broken into several pockets.5,24,29,34–38 Here, we develop
an effective Hamiltonian for ABC-stacked trilayer graphene,
to show that trigonal warping in it is both qualitatively and
quantitatively different from that in bilayers. The main con-
tribution to trigonal warping arises from a different type of
interlayer coupling that is missing in bilayers and we predict
that it leads to a Lifshitz transition at a much larger energy
�10 meV, which is ten times as large as in a bilayer. More-
over, on undergoing the Lifshitz transition, the Fermi surface
breaks into a different number of pockets reflecting Berry’s
phase 3� in contrast to 2� in bilayers. Here, we also gener-
alize our approach to describe trigonal warping in general
ABC-stacked N-layer graphene, to show that Berry’s phase
N� manifests itself in different characteristics of the Lifshitz
transition.

In the next section, we describe the effective mass model
of ABC-stacked trilayer graphene and the resulting band
structure. Then, in Sec. III, we derive an effective low-
energy Hamiltonian and we use it to compare the behavior of
low-energy chiral quasiparticles in trilayers with those in
monolayer and bilayer graphene. In Sec. IV, we provide an
approximate analytical description of the Lifshitz transition
in the absence and in the presence of interlayer asymmetry
that opens a gap in the spectrum. Section V describes the
manifestation of the Lifshitz transition in the degeneracy of
Landau levels in the presence of a finite magnetic field. In
Sec. VI, we generalize our approach to ABC-stacked N-layer
graphene. Throughout, we compare the approximate descrip-
tion of the effective low-energy Hamiltonian with numerical
diagonalization of the full effective mass model.

II. THE EFFECTIVE MASS MODEL OF ABC-STACKED
TRILAYER GRAPHENE

The lattice of ABC-stacked trilayer graphene consists of
three coupled layers, each with carbon atoms arranged on a
honeycomb lattice, including pairs of inequivalent sites
�A1,B1�, �A2,B2�, and �A3,B3� in the bottom, center, and
top layers, respectively. The layers are arranged as shown in

PHYSICAL REVIEW B 80, 165409 �2009�

1098-0121/2009/80�16�/165409�8� ©2009 The American Physical Society165409-1

http://dx.doi.org/10.1103/PhysRevB.80.165409


Figs. 1�a� and 1�c�, such that pairs of sites B1 and A2, and
B2 and A3, lie directly above or below each other �for com-
parison, the unit cell of ABA-stacked graphene is shown in
Fig. 1�d��. In order to write down an effective mass Hamil-
tonian, we adapt the Slonczewski-Weiss-McClure parameter-
ization of tight-binding couplings of bulk graphite.39

Nearest-neighbor, Ai-Bi for i= �1,2 ,3�, coupling within each
layer is described by parameter �0, �1 describes strong
nearest-layer coupling between sites �B1-A2 and B2-A3� that
lie directly above or below each other, �3��4� describes
weaker nearest-layer coupling between sites A1-B2 and
A2-B3 �A1-A2, B1-B2, A2-A3, and B2-B3�. With only these
couplings, there would be a degeneracy point at each of two
inequivalent corners, K�, of the hexagonal Brillouin zone32

but this degeneracy is broken by next-nearest-layer coupling
�2, between sites A1 and B3 that lie on the same vertical
line.10,23,28 For typical values of bulk ABA graphite we
quote39 �0=3.16 eV, �1=0.39 eV, �2=−0.020 eV, �3
=0.315 eV, and �4=0.044 eV. Although the atomic struc-
tures of ABA and ABC �rhombohedral� graphite are differ-
ent, we refer to those values in the following numerical cal-
culations, assuming that the corresponding coupling
parameters have similar values.40

In a basis with atomic components �A1, �B1, �A2, �B2,
�A3, and �B3, the ABC-stacked trilayer Hamiltonian7,28,40,41

is

ĤABC = �D1 V W

V† D2 V

W† V† D3
	 , �1�

where the 2�2 blocks are

Di = 
Ui v�†

v� Ui
� �i = 1,2,3� , �2�

V = 
− v4�† v3�

�1 − v4�† �, W = 
0 �2/2
0 0

� , �3�

where v= ��3 /2�a�0 /�, v3= ��3 /2�a�3 /�, v4= ��3 /2�a�4 /�,
�=�px+ ipy, �†=�px− ipy, and �= �1 is the valley index.
Here p= �px , py�= p�cos 	 , sin 	� is the momentum measured
with respect to the center of the valley �Fig. 1�b��. The pa-
rameters U1, U2, and U3 describe on-site energies of the
atoms on the three layers that may be different owing to the
presence of substrates, doping, or external gates. In the fol-
lowing, we set the average on-site energy to zero U1+U2
+U3=0 and write differences between the on-site energies in
terms of asymmetry parameters 
1 and 
2,26


1 = �U1 − U3�/2,


2 = �U1 − 2U2 + U3�/6.

Parameter 
1 describes a possible asymmetry between the
energies of the outer layers, whereas 
2 takes into account
the possibility that the energy of the central layer may differ
from the average outer layer energy.

As there are six atoms in the unit cell, ABC-stacked
trilayer graphene has six electronic bands at low energy as
plotted in Fig. 2. For no interlayer asymmetry 
1=
2=0,
and exactly at the K point, p=0, the eigenvalues � of Hamil-
tonian �1� are given by ��2−�1

2�2��2−�2
2 /4�=0. Four of the

bands are split away from zero energy by interlayer coupling
�1 ��= ��1 twice�. These high-energy bands correspond to
dimer states formed primarily from orbitals on the atomic
sites B1, A2, B2, and A3 that are strongly coupled by �1. The

FIG. 1. �a� Schematic of the ABC-stacked trilayer lattice con-
taining six sites in the unit cell, A �white circles� and B �black
circles� on each layer, showing the Slonczewski-Weiss-McClure pa-
rameterization �Ref. 39� of relevant couplings �0 to �4. �b� Sche-
matic of the hexagonal Brillouin zone with two inequivalent valleys
K� showing the momentum p measured from the center of valley
K+. �c� Schematic of the unit cell of ABC-stacked trilayer graphene,
�d� ABA-stacked trilayer graphene, and �e� bilayer graphene. In �c�,
�2 describes a vertical coupling between sites B3 and A1 in differ-
ent unit cells.
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FIG. 2. �Color online� Band dispersion of ABC-stacked trilayer
graphene in the vicinity of K+ along px axis. Parameter values are
�0=3.16 eV, �1=0.39 eV, �2=−0.020 eV, �3=0.315 eV, and �4

=0.044 eV �Ref. 39�.
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other two bands ��= ��2 /2� are split slightly away from
zero energy by next-nearest layer coupling �2 /2 that con-
nects atomic sites A1 and B3.23,28,10

Figure 2 shows the band structure at several 
1’s with

2=0, using the parameter values quoted above. 
1 opens an
energy gap between the lower electron and hole bands, be-
cause of the energy difference between A1 and B3 sites.7,10

Figure 3 shows contour plots of the lower electron band at
�a� 
1 /�1=0 and �b� 0.4, showing that the band is trigonally
warped, and the contour splits into three pockets at low en-
ergy. The detailed band structure and its relation to the band
parameters will be studied in the following sections.

III. THE LOW-ENERGY EFFECTIVE HAMILTONIAN

To describe the low-energy electronic properties of ABC-
stacked trilayer graphene it is useful to derive an effective
two-component Hamiltonian that describes hopping between
atomic sites A1 and B3. Such a procedure has been applied
to bilayer graphene5 and to ABC-stacked trilayer graphene7

for �3=�2=
2=0. We begin with the energy eigenvalue

equation H�=�� of the six-component Hamiltonian, Eq.
�1�, eliminate the dimer components = ��B1 ,�A2 ,
�B2 ,�A3�T and, then, simplify the expressions for low-energy
components �= ��A1 ,�B3�T by treating interlayer coupling �1
as a large energy scale �, vp, �2, �3, �4, 
1, and 
2
��1. We denote h� as the diagonal block of Hamiltonian of
Eq. �1� corresponding to �, h as the four by four diagonal
block corresponding to , and u as the off-diagonal 2�4
block coupling � and . The Schrödinger equation for �
can be expanded up to first order in � as
�h�−uh

−1u†��=�S� with S�1+uh
−2u†. Then, the effec-

tive Hamiltonian for �̃=S1/2� becomes H�eff��S−1/2�h�

−uh
−1u†�S−1/2.

Thus, we find the following two-component Hamiltonian
in a basis of the A1-B3 sites:

ĤABC
�eff� = Ĥ3 + Ĥ3w + Ĥ3c + Ĥ
1 + Ĥ
2,

Ĥ3 =
v3

�1
2
 0 ��†�3

�3 0
� ,

Ĥ3w = 
−
2vv3p2

�1
+

�2

2
�
0 1

1 0
� ,

Ĥ3c =
2vv4p2

�1

1 0

0 1
� ,

Ĥ
1 = 
1
1 −
v2p2

�1
2 �
1 0

0 − 1
� ,

Ĥ
2 = 
2
1 −
3v2p2

�1
2 �
1 0

0 1
� . �4�

Here we keep only the leading order for the terms including

�2, v3, and v4. Terms Ĥ3 and Ĥ
1 were derived in Ref. 7. The

cubic term Ĥ3 describes effective hopping between sites A1
and B3 via the other sites on the lattice that are strongly
coupled by �1. Taken on its own, it produces a dispersion

�= �v3p3 /�1
2. Ĥ3w arises from the skewed interlayer cou-

pling �3 and the next-nearest interlayer coupling �2, and is
responsible for trigonal warping as discussed in detail later.

Ĥ3c, coming from another interlayer coupling �4, gives an
identical curvature to the electron and hole bands and thus

introduces electron-hole asymmetry. Terms Ĥ
1 and Ĥ
2
arise from the interlayer asymmetries 
1 and 
2, respec-

tively. Ĥ
1 leads to the opening of an energy gap between the

conduction and valence bands, while Ĥ
2 produces electron-

hole asymmetry in a similar way as Ĥ3c. In the two-com-
ponent basis of ĤABC

�eff� , time reversal is described by Ĥ��p ,

1 ,��= Ĥ�−p ,
1 ,−�� and spatial inversion by �xĤ�p ,
1 ,

���x= Ĥ�−p ,−
1 ,−��. Manes et al.29 showed that the Fermi
points of ABC-stacked multilayers are stable with respect to
the opening of a gap against perturbations that respect com-
bined time reversal and spatial inversion, as well as transla-
tion invariance.
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FIG. 3. �Color� �a� Equienergy contour plots of the lowest elec-
tron band of ABC trilayer graphene at �a� 
1=0 and �b� 0.4�1.
Numbers on the contours indicate energy in units of �1. Filled and
empty triangles represent local minima and maxima, respectively,
of the energy band.

TRIGONAL WARPING AND BERRY’S PHASE N� IN… PHYSICAL REVIEW B 80, 165409 �2009�

165409-3



The low-energy effective Hamiltonian for ABC-stacked
trilayer graphene bears some resemblance to that of bilayer
graphene.5 In the lattice of bilayer graphene, Fig. 1�e�, two of
the sites �B1 and A2� are directly above or below each other
and are strongly coupled by interlayer coupling �1 whereas
two sites �A1 and B2� do not have a counterpart in the other
layer. The low-energy Hamiltonian is written in a basis
��A1 ,�B2� of these two sites

ĤAB
�eff� = Ĥ2 + Ĥ2w + Ĥ
,

Ĥ2 = −
v2

�1

 0 ��†�2

�2 0
� ,

Ĥ2w = v3
 0 �

�† 0
� ,

Ĥ2c =
2vv4p2

�1

1 0

0 1
� ,

Ĥ
 = 

1 −
2v2p2

�1
2 �
1 0

0 − 1
� , �5�

where parameter 
 describes interlayer asymmetry between
on-site energy 
 of the atoms, A1 and B1, on the first layer
and −
 of the atoms, A2 and B2, on the second layer.

The first term in each Hamiltonian, Ĥ2 for bilayers, Eq.

�5�, and Ĥ3 for ABC-stacked trilayers, Eq. �4�, are members

of a family of Hamiltonians ĤJ=F�p�� ·n, where n
= lx cos�J�	�+ ly sin�J�	� for p= p�cos 	 , sin 	�.5,7,29,30

They describe chiral quasiparticles, and the degree of chiral-
ity is J=1 in monolayer graphene, J=2 in a bilayer, and,
here, J=3 in ABC-stacked trilayer. Quasiparticles described
by the Hamiltonians ĤJ acquire a Berry’s phase
−i�Cdp · ���p��=J��, upon an adiabatic propagation
along an equienergetic line C. Thus charge carriers in ABC-
stacked trilayer graphene are Berry’s phase 3�� quasiparti-
cles, in contrast to Berry’s phase �� particles in monolayers,
2�� in bilayers. As well as the first term in Hamiltonian �4�
of ABC trilayers being a generalization of that in bilayers,
the influence of interlayer asymmetry 
1= �U1−U3� /2 as de-

scribed by Ĥ
1 is similar to that in bilayers as described by

Ĥ
, Eq. �5�.

IV. TRIGONAL WARPING AND THE
LIFSHITZ TRANSITION

In a similar way to bulk graphite,39 the parameter �3
�where v3= ��3 /2�a�3 /�� produces trigonal warping in bi-
layer graphene,5 where the equienergetic line around each
valley is stretched in three directions. This is due to the in-
terference of the matrix elements connecting A1 and B2,
where an electron hopping from A1 to B2 acquires a factor

e2i�	 in Ĥ2 and e−i�	 in Ĥ2w. We neglect the terms including
v4 which add a term �p2 to the energy but do not contribute
to trigonal warping. At 
=0, the eigenenergy of Eq. �5� is
given by

� � ��v3
2p2 − 2�

v3v
2p3

�1
cos 3	 +

v4p4

�1
2 . �6�

The warping has a dramatic effect when Ĥ2 and Ĥ2w have
comparable amplitudes, i.e., v2p2 /�1�v3p, which is satisfied
at p� p0=�1v3 /v2. It leads to a Lifshitz transition,5,24,29,33–38

in which the equienergetic line is broken into four separate
pockets. There is one central pocket located around p=0 and,
three “leg” pockets centered at momentum of magnitude p
= p0 and angle 	0=2n� /3+ �1−��� /6. The Fermi pocket
separation occurs at energy �L= �v3 /v�2�1 /4, which is esti-
mated to be �L�1 meV.

In ABC-stacked trilayer graphene, there is a similar, but
much greater warping effect. In hopping from A1 to B3, an

electron acquires a factor e3i�	 from Ĥ3 and a factor of unity

from Ĥ3w, giving trigonal symmetry in 	. At 
1=
2=0, the
eigenenergy of Eq. �4� reads,

� � � �f�p�2 + 2�f�p�g�p�cos 3	 + g�p�2, �7�

where f�p�=v3p3 /�1
2 comes from Ĥ3 and g�p�=−2vv3p2 /�1

+�2 /2 from Ĥ3w. Similarly to the bilayer, the warping effect
is prominent when g�p�� f�p�, or p� p0 with vp0 /�1
���2 / �2�1��1/3− �v3 /v� /3. This estimate is valid as long as
v3 /v� �2 /�11/3, which holds for typical parameter values
of bulk graphite.39

The major difference from the bilayer is the contribution
of the parameter �2 /2, which appears in the Hamiltonian
without an accompanying momentum-dependent factor and,
thus, it does not vanish at p=0. Such trigonal warping pro-
duces a Lifshitz transition at low energy, but, unlike bilayers,
it occurs at energy �L��2 /2. Although the value of �2 in
ABC-trilayer graphene has not been measured experimen-
tally, comparison with similar couplings in bulk graphite39

suggest that �2�20 meV. This opens up the possibility
that the Lifshitz transition in ABC trilayer graphene could
occur at a much higher energy than that in bilayers. At en-
ergy lower than �2 /2, the contour splits into three leg pock-
ets centered at p� p0 in a trigonal manner. Unlike bilayer

graphene, the central pocket is missing because Ĥ�2
does not

vanish at p=0.
An effective Hamiltonian in the vicinity of the leg pock-

ets, for ���L, may be obtained by transforming to momen-
tum q= �qx ,qy� measured from their centers,

qx = px cos 	0 + py sin 	0 − p0, �8�

qy = − px sin 	0 + py cos 	0, �9�

and taking the limit of infinitely large �1

ĤABC
leg = 3v� �2

2�1
�2/3
 0 ��qx − iqy

��qx + iqy 0
� , �10�

where �=1+ �4v3 /3v��2�1 /�2�1/3. Thus, the pockets are el-
liptical with dispersion �� �3�2 / �2�1�2/3v��2qx

2+qy
2. The

different nature of the Lifshitz transition in bilayers and
ABC-stacked trilayers is a manifestation of Berry’s phase. In
trilayer graphene, the geometrical phase integrated around
the equienergy line of each pocket is �� as in a monolayer,
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giving 3�� in total. This is different from bilayers, where
3�� arises from three leg pockets and −�� from the center
pocket gives 2�� in total.29,37

Interlayer asymmetry 
1 opens a gap in the spectrum and
produces a Mexican hat feature in the low-energy disper-
sion.7 The eigenenergy corresponding to Eq. �4� is given by

� � � �f�p�2 + 2�f�p�g�p�cos 3	 + g�p�2 + h�p�2,

�11�

with an extra term as compared to Eq. �7�, h�p�=
1�1
−v2p2 /�1

2�, coming from Ĥ
1
. For no trigonal warping

�g�p�=0�, it yields �2=
1
2�1−v2p2 /�1

2�2+v6p6 /�1
4. The en-

ergy is �= �
1 at zero momentum, but there is a minima
located isotropically about the center of the valley at finite
momentum p= p1��2 /3�1/4�
1�1 /v �for 
1� �1� at
which the energy is �=�1� �
1�1− �2 /3�3/2
1 /�1�.

In the presence of trigonal warping, there is an interplay
between the Mexican hat feature and the Lifshitz transition.
In the large gap regime, such that g� f ,h, the circular edge
of the band bottom is trigonally distorted by the perturbation
of g�p�, making three pockets on it. The bottom of the pock-
ets moves to momentum p= p1+�p1 with v�p1 /�1
���6 /8���2 / �2
1��− �5 /6��v3 /v�, and energy �=�1−��1

with ��1= �2 /3�3/4�
1 /�1�2 /2−�8 /3�v3 /v�
1. The area of
the pocket in k space becomes on the order of p1�p1, and the
depth in energy is of order ��1, both of which increase as 
1
increases. This significant enlargement of the trigonal pock-
ets, in the presence of finite 
1, is illustrated in Fig. 3 which
is produced by numerical diagonalization of the full Hamil-
tonian �1�. Note that similar widening of the pockets by the
gap term occurs in bilayer graphene as well. This can be
understood in an analogous way, by writing f�p�=v2p2 /�1,
g�p�=v3p, and h�p�=
�1−2v2p2 /�1

2�.

V. LANDAU LEVEL SPECTRUM

The energy levels in a magnetic field are given by replac-
ing p with p+eA in Hamiltonian �1�, where A�r� is the
vector potential corresponding to the magnetic field. Here we
consider a uniform magnetic field B applied along +z direc-
tion in a Landau gauge A= �0,Bx�. Operators � and �† are
then related to raising and lowering operators a† and a of the
Landau level in a conventional two-dimensional system,
such that �lB / ��2����†=a† and a for K+ and K−, respectively,
with lB=�� / �eB�. The operator a acts as a�n,k=�n�n−1,k, and
a�0=0, where �n,k�x ,y��eikye−z2/2Hn�z� is the wave function
of the nth Landau level in a conventional two-dimensional
system with z= �x+klB

2� / lB, and Hn being a Hermite polyno-
mial.

In the simplest model including only �0 and �1 without

trigonal warping, the effective Hamiltonian Ĥ3 in Eq. �4�
yields the eigenstates for K+ �Ref. 7�

�n = 0, �nk � 
�n,k

0
� �n = 0,1,2� ,

��sn = s

B

3

�1
2
�n�n − 1��n − 2�

�snk � 
 �n,k

s�n−3,k
� � �n � 3� , �12�

where s= �1 describes the electron and hole levels, respec-
tively, 
B=�2�v2eB. The eigenstates n=0, 1, and 2 have a
nonzero amplitude only on the first element �A1�, and remain
at zero energy regardless of the magnetic field strength,
while the energy of the other levels behaves as �B3/2. At the
other valley K−, there is a similar structure except that the
first and second elements are interchanged, i.e., the zero-
energy Landau levels have amplitudes only on sites B3.7

Trigonal warping gives a remarkable feature in the struc-
ture of Landau levels. In enough small fields, the three leg
pockets independently accommodate an equal number of
Landau levels so that they are triply degenerate. This is in
contrast to bilayer graphene where the central pocket also
contributes to the degeneracy.5 The low-energy effective
Hamiltonian, Eq. �10�, shows that the Landau level energy
follows a similar sequence as that in monolayer graphene,
�n=3�2 / �2�1�2/3��
B sgn�n��n, where n is integer. The to-
tal number of Landau levels accommodated in each pocket is
roughly estimated by the condition �n��2 /2, as n
���1 /
B�2��2 / �2�1��2/3 / �9��.

Figure 4�a� shows the Landau level spectrum at the valley
K+ as a function of 
B���B�, numerically calculated for the
full parameter model Eq. �1� at 
1=
2=0. Below �=�2 /2,
the Landau levels are triply degenerate and move in propor-
tion to �B. The degeneracy of each level is broken at �
=�2 /2, and it splits into three separate levels, corresponding
to coalescence of the leg pockets at the Lifshitz transition. At
even higher energy, it approaches B3/2 behavior as described
in Eq. �12�. The triply degenerate level around zero energy is
regarded as the n=0 level in each of three pockets. In actual
fact, its degeneracy is split slightly in a large magnetic field,
owing to magnetic breakdown among the semiclassical or-
bits in the leg pockets, which is caused by the parameter v4.
When the trigonal warping vanishes, those three levels
switch to the degenerate levels with indices n=0, 1, and 2 in
Eq. �12�.

Figure 4�b� shows the Landau level spectrum at K+ as a
function of asymmetry 
1 with fixed magnetic field 
B
=0.1�1 �B�1 T�. As 
1 is changed from negative to posi-
tive, three Landau levels �indicated by the single diagonal
line that crosses �=0 at 
1=0 in Fig. 4�b�� are pumped from
the hole side to the electron side. In the approximate model
of Eq. �12�, this corresponds to the fact that the energy levels
n=0, 1, and 2 have a wave amplitude only on A1, so that it
acquires on-site energy +
1 in the first order of perturbation.
At the other valley K−, there is the opposite movement, i.e.,
the three levels go down from positive to negative energies
in increasing 
1.

The energy of the Lifshitz transition appears as a region
where the levels are densely populated, and below that en-
ergy the levels are triply degenerated �indicated by the
shaded region in Fig. 4�b��. It should be noted that the num-
ber of triply degenerate levels increases for larger 
1, reflect-
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ing the enlargement of the trigonal pockets discussed above.
In a measurement of Hall conductivity, those triply degener-
ate Landau levels would be observed as quantum Hall steps
of magnitude 3gvgse

2 /h, where gv=gs=2 are the valley and
spin degeneracies, respectively.

VI. GENERAL ABC-STACKED MULTILAYER GRAPHENE

The analysis of ABC-stacked trilayer graphene can be ex-
tended to multilayers with N layers. We consider each layer
to consist of carbon atoms on a honeycomb lattice, and the
layers are arranged with ABC stacking. The Hamiltonian is
written in a basis �A1 ,�B1 ,�A2 ,�B2 , . . . ,�AN ,�BN, as40,41

ĤN =�
D1 V W

V† D2 V W

W† V† D3 � �

W†
� �

�

	 , �13�

where the 2�2 blocks Di, V, and W are defined in Eqs. �2�
and �3�. Pairs of sites B�i� and A�i+1� �i=1, . . . ,N−1� are
vertically above or below each other, and are strongly
coupled by �1 giving dimer states. Thus, all the sites in the
lattice, except two, contribute to bands that lie away from
zero energy. The remaining two sites, A1 and BN, form the
lowest-energy electron and hole bands. Note that these sites
lie on the outer layers, so that the lowest bands are missing in
an infinite system with periodic boundary conditions applied
in the stacking direction. The band structure has trigonal
symmetry for any N. This is checked by applying the trans-
formation 	→	+2� /3 to Eq. �13�, where the change in the
matrix elements can be canceled by the gauge transformation

�̃An=�n�An and �̃Bn=�n�Bn, with �n=ei�2n�/3.
The effective low-energy Hamiltonian is obtained by

treating terms other than �1 as perturbations. The effective
Hamiltonian in a basis ��A1 ,�BN� reads

ĤN
�eff� = 
 0 X�p�

X†�p� 0
� +

2vv4p2

�1

1 0

0 1
� ,

X�p� = �
�n1,n2,n3�

�n1 + n2 + n3�!
n1 ! n2 ! n3!

1

�− �1�n1+n2+n3−1

� �vpei�	�n1�v3pe−i�	�n2
�2

2
�n3

, �14�

where the summation is taken over positive integers which
satisfy n1+2n2+3n3=N. Here we collected all the higher or-
der terms not including v4, but retain just the leading term
for v4. The trigonal warping structure can be described well
in this treatment as shown below, since v4 only gives the
circularly symmetric band curvature as in ABC trilayer.

The eigenenergies are given by �=2vv4p2 /�1
2� X�p�. If

we neglect �2 and v3, we have X= �vpei�	�N / �−�1�N−1 which
gives a pair of bands, isotropic in momentum, which touch at
the origin.5,7,29,30 Berry’s phase integrated along an energy
contour is N�� at every energy. Perturbation by �2 and v3

produces trigonal warping as observed in the trilayer. Figure
5 shows the lower energy band structure for 	=0 at several
N’s, where the solid lines are calculated using the original
Hamiltonian �13�, and the dashed lines use Eq. �14�. We can
see that the effective Hamiltonian reproduces the original
band structure rather well including the positions of the band
touching points, except that the magnitude in energy tends to
be overestimated around vp��1 where the perturbative
approach fails.

The band touching points, or Dirac points, are given by
the solution of X�p�=0. They appear in a series of p’s at only
three angles 	0=2n� /3+ �1−��� /6, and around which the
Hamiltonian has a chiral structure similar to monolayer
graphene. We empirically found that the arrangement of
these points obeys the following rules: we have ��N+1� /3�
Dirac points at p�0 at each of three angles, and each of
them has Berry’s phase ��. Here �x� represents the greatest
integer which does not exceed x. The Dirac point at the cen-
ter �p=0� only appears when N is not a multiple of three, and
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FIG. 4. �Color online� Landau levels of ABC trilayer graphene,
plotted against �a� B1/2 at fixed 
1=0, and �b� 
1 at fixed magnetic
field �2�v2eB�1/2=0.1�1 �B�1 T�. The region in which Landau
levels are triply degenerate is highlighted by shading.
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its Berry’s phase is �� and −�� when N�1 and −1�mod 3�,
respectively. The total Berry’s phase summed over all Dirac
points is always N��, the same as the value without trigonal
warping. The energy scale for fine structure around the Dirac
points becomes smaller as N increases, because the matrix
elements connecting A1 and BN become higher order in p for
larger N. We see that N=3 has the most prominent structure,
where �2 directly connects A1 and BN. The parameter v4
never opens a gap at the Dirac points but gives an energy
shift by 2vv4p2 /�1 and associated band curvature, leading to
misalignment of the Dirac point energies as shown in Fig. 5.
This term, 2vv4p2 /�1, is ever present in the effective Hamil-
tonian for N-layer ABC-stacked multilayers, Eq. �14�, be-
cause it arises from a correction of the on-site energy due to
a second-order process hopping on and off the next layer

from the outermost layer �an A1 or BN site�. The approach
applied to the Landau levels of the trilayer in Sec. V can be
extended to the N-layer case. In the simplest model including
only �0 and �1, the Landau levels at K+ read

�n = 0, �nk � 
�n,k

0
� �n = 0,1, . . . ,N − 1� , �15�

��sn = s

B

N

�1
�N−1�

�n�n − 1� ¯ �n − N + 1�

�snk � 
 �n,k

s�n−N,k
� � �n � N� ,

�16�

with s= �1. The first and second elements are again inter-
changed at the other valley K−. The zero-energy level is now
N-fold degenerate per valley and per spin.7,29,30 In the pres-
ence of trigonal warping and v4, however, this is expected to
split in accordance with the discrepancy between the ener-
gies of different Dirac points shown in Fig. 5 for B=0, while
some levels keep threefold degeneracy owing to trigonal
symmetry as in the trilayer case. It is possible that electronic
interactions may create exotic collective modes in such
highly degenerate Landau levels, but we leave the discussion
of this for future studies.

VII. CONCLUSIONS

In ABC-stacked multilayer graphene with N layers, two
low-energy bands in the vicinity of each valley are formed
from two electronic orbitals that lie on the bottom and top
layers of the system. Such bands support chiral quasiparticles
corresponding to Berry’s phase N�.5,7,29,30 The interplay be-
tween different types of interlayer coupling produces trigonal
warping, in which the Fermi circle around each valley is
stretched in three directions. At very low energy, trigonal
warping leads to a Lifshitz transition33 when the Fermi circle
breaks up into separate pockets, in such a way that the total
Berry’s phase is conserved. We predict that the Lifshitz tran-
sition is particularly prominent in trilayers, N=3, with the
Fermi circle breaking into three parts at a relatively large
energy that is related to next-nearest-layer coupling. This
prediction is guided by the strength of the next-nearest-layer
coupling reported for bulk Bernal-stacked graphite �2
�20 meV,39 but the value of �2, and, therefore, the precise
energy at which the Lifshitz transition occurs in ABC trilayer
graphene, is yet to be determined experimentally.
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